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Summary. Time-dependent perturbation theory has been applied to calculate 
the doubly excited triplet states Nsns: 3Se, Npnp: 3De and Ndnd: 3Ge (N = 2, 3, 4, 
n = N + 1, ... ,5) for He, Li ÷, Be 2+ and B 3+. A time-dependent harmonic per- 
turbation causes simultaneous excitation of both the electrons with a change of 
spin state. The doubly excited energy levels have been identified as the poles of an 
appropriately constructed linearized variational functional with respect to the 
driving frequency. In addition to the transition energies, effective quantum num- 
bers of these doubly excited states have been calculated and analytic representa- 
tions of their wave functions are obtained. These are utilized to estimate the 
Coulomb repulsion term for these states which checks the consistency of the wave 
functions. These wave functions may also be used for calculating other physical 
properties of the systems. 
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1 Introduction 

Study of the doubly excited states of atoms has growing interest during the last two 
decades chiefly because of their importance in interpreting astrophysical data [-1, 2] 
and their level description in terms of a new set of quantum numbers [3-7] which 
represents a complete departure from conventional single particle picture [8]. 
Although it is observed first in helium by Madden and Codling [9] in photo- 
absorption experiments, now it is experimentally observed for highly charged ions 
also [10]. 

Theoretical calculations so far done involve two distinct approaches. The first 
one involves collisional methods as pioneered by Burke and Taylor [-11], O'Malley 
and Geltman [-12], Macek [13] and more recently by Callaway [14], Bhatia and 
Temkin [15], Lipsky et al. [16], Chung and Davis [17]. In their analysis the doubly 
excited states are treated as quasi-bound resonances embedded in scattering 
continuum. The other approach is based on treating the levels from bound state 
point of view. To this end accurate calculations using complex rotation method by 
Ho and co-workers [18], hyperspherical co-ordinate approach by Lin [-19] and 
others [2054]  and several other approaches [25, 26] are important, especially the 
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molecular orbital (MO) approach by Faegin and Briggs [27] to find these resonant 
states. The method was reviewed by Rost and Briggs [28] recently which gives 
a clear picture of the origin of the quantum numbers described by Herrick et al. [4]. 
The distinguishing characteristics like excitation and decay of doubly excited states 
of atoms and ions have been discussed thoroughly by Rau [29]. 

Experimental methods use photo-absorption techniques [9], electron and ion 
impact observation [30] and the more recent beam-foil techniques [31] and ejected 
electron spectra [32, 33]. Good reviews are now available on such calculations 
[34]. 

In the present communication time-dependent perturbation theory has been 
applied to calculate the doubly excited states Nsns: 3Se, Npnp: 3De and Ndnd: 3Ge 
(N = 2, 3, 4, n = N + 1, ... , 5) for the helium isoelectronic ions up to B 3 ÷. The 
method which we adopted is based on bound state approach. The method was 
discussed earlier in detail by Mukherjee and co-workers [35-37] and applied for 
studying the doubly excited triplet transitions Nsnp: 3po, Nsnd: 3De and Npnd: 3F° 
from aS e ground state of helium isoelectronic sequence [38]. We seek the natural 
excitation modes of the two electron charge cloud using a correlated description of 
the electron pair. A suitable form of two-particle harmonic perturbation is chosen 
which induces simultaneous excitations of the electrons to different spatially 
excited states accompanied by a change in the spin state. In Sect. 2 we give a brief 
description of the method. Section 3 will deal with a discussion of the present 
results. 

2 M e t h o d  

Let us consider the time evolution of a two electron system, initially at the ground 
state 7/with energy Eo of the usual non-relativistic Hamiltonian Ho, subject to 
a spin-dependent harmonic perturbation of the form 

H'(r, a, t) = G(r, a)e -i°)t + G+ (r, a)e i°)t. (1) 

The perturbation G(r, ~) is such that it excites both the electrons simultaneously to 
a new state changing the spin multiplicity from singlet to triplet. A suitable choice 
of the perturbation may be 

G(r, a) = 2[h(rl)h'(r2) - h(r2)h'(rl)] [S_(1)S+(2) - S (2)S+(1)J, (2) 

where 2 is the perturbation strength parameter, S+ and S_ are the usual spin up 
and spin down operators. The spatial term excites the electrons from the ground 
state. The general structure of the one particle term is given by 

h(r) = rt Pz (cos 0), (3) 

l = 0, 1, 2, . . . ,  will excite the ground s orbital to s, p, d . . . .  , symmetries respectively. 
Following [38] we can write the time evolution of the total wave function as 

• (t) = N [ 7 "  + 6 7 " - e  - i~ '  + 67" + e i~'] e -iEt, (4) 

where 67" -+ are the first order admixtures to 7' due to two harmonic components of 
the perturbation. Here the spin part of 7" and 67" are different. N is a normalization 
constant to be determined from the condition [38] 

- <(bl~>dt = 1. (5) 
T o 



Doubly excited states of two-electron atomic systems 149 

Since the perturbing Hamiltonian equation (2) changes the spin multiplicity, the 
spin part of the ~ and 67 ~ +- are different. To determine the time evolution of the 
total wave function we have to determine the first order perturbed functions c ~  +-. 
These are obtained by constructing a time averaged functional 

= (~ lHo  + H'  " 8 J(@) T o - 1~]q5) dt (6) 

subject to the optimization condition 

c~J(@) = 0, (7) 

with respect to parameters introduced in the functions bY +. We expand the spatial 
part of 6T  -+ in the following manner: 

67 j-+ = ~ Ci + t/i(1, 2), (8) 

where t/~(1, 2) are correlated pair bases formed out of one particle Slater type 
orbitals (STOs) [38] 

t/~(1, 2) ~ ~.g(1) ~',(2) - {k(2) {',(1) (9) 

and Ci -+ are the linear variation parameters. Choice of exponents of the Slater bases 
depends on the symmetry and principal quantum number of the excited orbitals 
and are preassigned here. We expand the functional [Eq. (6)] in terms of a T  -+ and 
retain terms up to quadratic in 6 T-+. The optimization condition, namely 

0J(~b) 
- o ,  ( 1 0 )  

0C + 

leads to sets of decoupled linear equations in the unknown parameters C -+ [38] 
which can readily be solved for a given external frequency to get the response 
characteristics of the system. A discussion of the results is given in the next section. 

3 Results and discussions 

Low and moderately high lying doubly excited triplet transitions viz IS2: 
ase --, Nsns: 3se; Npnp: 3De and Ndnd: 3Ge, N = 2, 3, 4 and n = N + 1, ... , 5 have 
been studied for helium isoelectronic sequence up to B 3 +. For  He we used radially 
correlated ground state wave function of Mukherji [39] computed with Weiss [40] 
exponents. For  Li +, Be 2 + and B 3 + the ground state wave functions are obtained 
from Mukherji [39] computed with Clementi [41] exponents. For  all the perturbed 
orbitals 7 parameter STO representation has been used. The choice of the set of 
exponents of the perturbed orbitals depends on the principal quantum number and 
the symmetry of the orbital. In the present triplet state calculation although the 
angular momentum of the orbitals are the same, the inner and outer principal 
quantum numbers are different. Accordingly we have chosen different basis sets for 
the inner and outer orbital representations. We do not mix basis sets of different 
symmetries and thus take care of radial correlation only. The parameters of the 
product basis set are determined, through optimization procedure at each external 
frequency and provide very reasonable description of the perturbed functions at the 
given frequency. The optimized functional J(q~) rises monotonically with respect to 
the driving frequency ~o with occasional real poles. The pole positions determine 
doubly excited modes of the unperturbed Hamiltonian and hence positions of these 
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poles represent the doubly excited energy levels measured from the ground state 
energy of the systems. The first order perturbed function 67 ~- blows up at pole 
positions and renormalization of the first order perturbed function at the poles 
furnishes adequate description of the doubly excited wave functions [38]. 

In Table 1 the calculated TDVPT 3Se double excitation energies are displayed 
along with the values of the Coulomb repulsion integral in the excited state for He, 
Li +, Be 2 ÷ and B 3 ÷. The level description was done according to the configuration 
scheme of Cooper et al. [8]. Such results for the triplet excitations to 3D~ and 3G° 
states for all the ions have been listed in Tables 2 and 3, respectively. In all cases 
transition energy was measured from the ground state 1se. We have chosen the 
angular part of the two particle perturbation operator in such a way that Npnp: 
3De and Ndnd: 3G~ final states are allowed. The quantum numbers N, K, T, n and 
A of the doubly excited states as prescribed by the group theoretical analysis of 
Wulfman [3], Herrick and Sinanoglu [4] and Lin [7, 19] are also listed in the 
respective tables to have correspondence with the configuration state description. 
In the group theoretical analysis effect of radial and angular correlations have been 
taken care of, whereas our method incorporates radial correlations only. The effect 
of radial and angular correlations on the doubly excited states was thoroughly 
discussed by Lin [7] and Ezra and Berry [42] using hyperspherical co-ordinate 
method. 

Most of the theoretical data available on transition energy were compiled by 
Shearer-Izumi [43]. In this regard Lipski et al. [16] have done important and 
exhaustive calculations using configuration interaction (CI). We compared our 
data with those compiled by Shearer-Izumi [43], Lipski et al. [16] and with the 
accurate results using complex rotation method by Ho and co-workers [18]. 
Experimental data are available only for very few of the triplet transitions 3D~ [44, 
45] and we have accordingly listed them in Table 2. Theoretical data existing for 
the 3G~ states are rather scanty. Available data are listed in Table 3. Most of the 
theoretical calculations use highly correlated basis sets for both the ground as well 
as excited states, hence the data are very accurate. As discussed in [38], the 
discrepancy of our results arises from two sources. Firstly the reference point, 
namely the ground state energy from where the excitation energy is measured is 
taken from the radially correlated calculation of Mukherji [39] (results with 
superscript c~ in the tables). These give a little underestimate of the transition 
energies. In order to rectify this error we have also chosen the reference point as 
that given by Pekeris [46]. Results with superscript/3 in the tables are with these 
reference ground state energies. The second source of errors comes from the neglect 
of angular correlation in the excited states. From a close look at the calculated and 
existing accurate data listed in Tables 1-3 we find that the maximum deviation 
which occurs for He is about 0.7% and the deviation diminishes as we go towards 
transitions of higher inner or outer quantum numbers or transitions of higher 
isoelectronic members. This is quite reasonable since the effect of interelectronic 
correlation is relatively less for such transitions. The overall agreement of the 
computed data with the existing ones clearly indicates that the effect of angular 
correlations in the excited states is confined to within 1% for all the systems under 
study. Along with the transition energies we get analytic wave functions for the 
doubly excited states in terms of Slater bases. These analytic wave functions 
contain lesser number of parameters than those from traditional variational 
calculations. These wave functions may be useful for calculating other properties 
like the autoionisation rates, transition probabilities etc. In the present case we 
have calculated the expectation value of the Coulomb repulsion term in the doubly 
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excited state. The very regular behavior  of the expectation values as reflected from 
the tables, show the consistency of  the excited state wave functions. These wave 
functions may  be effectively used for collision calculations involving doubly  excited 
states, many  of whom, are impor tan t  in the solar chromosphere.  

As an extra check for the doubly  excited energy levels we estimated the effective 
quan tum numbers  n* of  such states using the formula [-16] 

1 I - ( Z ~ 2  ( Z -  1~2~ (11) 

where 8 is the energy of  the doubly  excited state (in a.u.) measured from the 
ionisation threshold, N is the principal quan tum number  of the inner electron and 
Z is the nuclear charge. The calculated n* values have been compared  with those 
obtained by Lipsky et al. [16] in Tables 1, 2 for 3Se and 3De states, while in Table 
3 for the few 3Ge states these are compared  using the existing data  of Callaway [14] 
and Ho  [18]. The percentage deviation is max imum for the lowest transit ion in He 
and it diminishes as we move  towards higher lying excitations. This feature is 
reflected for all the ions. The deviation also diminishes as we move along higher 
members  of the isoelectronic sequence. The effective quan tum number  n* depends 
sensitively on the energy levels. The relatively large difference of  our  n* values from 
those obtained from experimental data  is not  due to the present me thodo logy  but is 
coming from the choice of  our  radially correlated basis sets. Results are expected to 
be more  accurate using basis sets which include radial as well as angular  correla- 
tions. In the present scheme we calculated the transitions only up to N -- 4 and 
n = 5 levels. As for higher lying transitions, particularly for 3Ge states practically 
no data  is available for comparison.  Angular  correlat ion may  be incorporated  in 
these calculations by suitably extending the produc t  basis sets. This is under 
present considerat ion and results will be reported in due course. 
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